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General Equations for Pt, Ps, and the Power of the TDT and the
Affected–Sib-Pair Test
Ralph McGinnis
Biotechnology and Genetics, SmithKline Beecham Pharmaceuticals, Harlow, Essex, United Kingdom

Several equations are highlighted here, whose algebraic symmetries and generality make them very useful for
understanding and comparing the properties of the transmission disequilibrium test (TDT) and affected sib-pair
test. Methods using the equations are also presented that yield precise estimates of sample sizes needed for genome
scans or for testing a single candidate gene, and these power methods are shown to compare favorably with
alternative approaches recently described by Knapp (1999) and by Tu and Whittemore (1999). Simple relationships
are also noted that summarize the relative sample sizes required for equivalent power to detect association by the
TDT or case-control designs. As single-nucleotide polymorphism (SNP) maps revolutionize the search for disease-
causing genes, the equations should prove useful for planning and evaluating studies of linkage and association
across a broad range of possible disease models and relationships between markers and linked disease loci.

I wish to highlight several equations that are very useful
for understanding and comparing the properties of the
transmission disequilibrium test (TDT) (Spielman et al.
1993) and the “mean” affected sib-pair (ASP) test
(Knapp et al. 1994). I previously demonstrated that these
equations provide a general framework for determining
the power of each test (McGinnis 1998); indeed, as I
show here, the method I previously described predicts
sample sizes for genomewide scans that are almost
identical to those recently presented by Knapp (1999),
Tu and Whittemore (1999), and Camp (1999). The
equations are also among the most general presented to
date, since they (a) cover general modes of inheritance,
(b) describe any marker that is linked to a biallelic dis-
ease locus, and (c) subsume, as special cases, corres-
ponding equations presented by Risch and Merikangas
(1996) and Camp (1997, 1999). Perhaps most impor-
tant, the two central equations ( and in fig. 1) exhib-P Ps t

it symmetries and a partitioning of the influence of ba-
sic genetic parameters and thus facilitate TDT-ASP
test comparisons and help provide an intuitive under-
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standing of the properties of each test.
The equations are applicable to understanding ASP

analyses in general, but here I focus on the “mean” test
(hereafter denoted “ASP test”) because it is generally
the most powerful form of ASP analysis (Knapp et al.
1994). The ASP test detects linkage in families
considered to be single parent-ASP trios, if the two sibs
share one of the parental alleles (identical-by-descent
[ibd]) in significantly more than half of the trios in the
data set where and are2 2[x p (n � n ) /(n � n ) n nasp s n s n s n

the total number of trios that exhibit ibd allele sharing
( ) or nonsharing ( )]. The TDT also detects linkagen ns n

in nuclear families but does so if a particular (“disease
associated”) marker allele is preferentially transmitted
from heterozygous parents to individual affected
offspring across an entire population or set of families

where and are the total2 2[x p (n � n ) /(n � n ) n ntdt a b a b a b

number of instances that heterozygous A/B parents
transmit marker allele A ( ) or allele B ( ) to individualn na b

affected offspring]. As explained below, the power of
both x2’s can be estimated by considering heterozygous
parents in a data set to be identical, randomly selected,
independent events, each having a probability ( ) ofPs

increasing the value of and x2
asp, and each having ans

second probability ( ) of increasing the value of andP nt a

x2
tdt.
To facilitate an understanding of , , and relatedP Ps t

equations that I wish to highlight, I first describe their
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Figure 1 General equations for understanding and comparing the TDT and affected sib-pair (ASP) test. The equations assume (1) random
ascertainment of nuclear families with an ASP, and (2) linkage between a biallelic marker (alleles A and B) and biallelic disease locus (predisposing
allele D, “protective” allele d); with minor modifications, these equations also describe markers that are multiallelic or completely polymorphic
(McGinnis 1998). Variables in the equations are as follows: a, b, and g are penetrances of the DD, Dd, and dd genotypes, respectively; c1, c2,
c3, and c4 are population frequencies of AD, Ad, BD, and Bd haplotypes, respectively; p is the population frequency of disease allele D; and v

is the recombination fraction between marker and disease loci. The quantities F and H are proportional to the population frequencies of parents
who have produced an ASP (F) and such parents who are also heterozygous (H). WDD, WDd, and Wdd are “weights” that reflect the relative
ability of DD, Dd, and dd parents to produce an ASP.

basic features and then discuss some results derived
from them.

Basic Description of the Equations

The equations shown in figure 1 assume random as-
certainment of families with an ASP and linkage between
a biallelic marker (alleles A and B) and biallelic disease
locus (alleles D and d); however, the same equations are
easily modified to describe linked markers that are mul-
tiallelic or completely polymorphic (McGinnis 1998).

is the probability that a randomly ascertained, infor-Ps

mative (A/B) parent transmitted the same marker allele
(ibd) to both affected sibs; and is the probability thatPt

the parent transmitted a particular marker allele (e.g.,
allele A) to an individual affected sib. Thus, can bePs

regarded as the probability of allele “sharing” by ASPs
while can be considered the probability of individualPt

allele “transmission.” The final section in figure 1 de-

scribes the numerator and denominator of , whichH/F
is the proportion of randomly ascertained parents of an
ASP expected to be heterozygous at the marker. isH/F
important in determining effective sample size since the
TDT and ASP test only consider alleles transmitted from
informative parents.

When effective sample size is fixed (i.e., andn � ns n

are constant), note that 2 2n � n x p (n � n ) /(n �a b asp s n s

will increase only if ( ) increases, thereby in-n ) P � .5n s

creasing the ratio; and analogously, 2n /n x p (n �s n tdt a

will increase only if increases (see2n ) /(n � n ) FP � .5Fb a b t

Risch and Merikangas [1996] and McGinnis [1998]).
Therefore, given their pivotal roles in driving the mag-
nitudes of x2

asp and x2
tdt, what do the expressions in figure

1 reveal about the magnitudes and properties of andPs

? In the absence of linkage, both probabilities equalPt

0.5; when linkage is present, each probability equals 0.5
plus the product of three factors ( ,P p 0.5 � L M Rs s s s

and ). Note that the leftmost factorsP p 0.5 � L M Rt t t t
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Figure 2 Values of and showing extreme elevation ofP Pt s

for a disease locus that confers modest dis-FP � .5F/(P � .5) p R /Rt s t s

ease risk. The three-dimensional, “saddle-shaped” surfaces showing
values of (upper surface) and (lower surface) were calculatedP Pt s

assuming that DD penetrance (a) is only two times greater than dd
penetrance (g) and assuming that the marker is the disease locus. Iden-
tity of the marker and disease locus implies that andL p L M ps t s

in the expressions and , andFM F P p .5 � L M R P p .5 � L M Rt s s s s t t t t

thus . Values of or (Z-axis) are plottedFP � .5F/(P � .5) p R /R P Pt s t s t s

as a function of the frequency (p) of disease allele D (Y-axis) and mode
of inheritance (X-axis) where X denotes Dd penetrance (b) in terms
of its numerical “location” ( ) between dd penetrance (where1 � X � 0

) and DD penetrance (where ). The much higher valueX p 0 X p 1
of compared to across the entire parameter spaceFP � .5F (P � .5)t s

shows why the TDT has greater power than the ASP test to detect
genes of modest effect, if a marker is found that is strongly associated
with the disease locus.

, ) depend only on the recombination fraction (v),(L Ls t

the middle factors ( , ) depend on haplotype fre-M Ms t

quencies ( ) and the quantity H (see fig. 1), andc ,c ,c ,c1 2 3 4

the rightmost factors ( ) depend only on the prop-R ,Rs t

erties of the disease locus (i.e., disease-allele frequency
p and penetrances ). In addition to and beinga,b,g R Rs t

completely independent of the marker, it was shown that
(McGinnis 1998), and inspection also showsR 1 Rt s

that for any marker. Thus, would al-L � L FP � .5Ft s t

ways exceed ( ) were it not for the influence of theP � .5s

middle factors ( ).M ,Ms t

Note, then, that and are identical except thatM Mt s

the numerator of is the disequilibrium coefficient dM t

(where ) whereas the numerator ofd p c c � c c M1 4 2 3 s

is the two components of d added together (c c �1 4

). This implies that and, becausec c M � FMF FM F2 3 s t t

reaches its minimum of 0 at equilibrium ( ) whereasd p 0
is always positive, it follows thatM (P � .5) 1 FP �s s t

when disequilibrium between marker and disease.5F ≈ 0
locus is low. However, suppose allele frequencies at the
biallelic marker and the biallelic disease locus are fixed.
It was shown in McGinnis (1998) that and areFM F Mt s

(a) both maximized and (b) equal to each other when
the disease-causing allele exhibits maximum possible as-
sociation with the marker allele nearest in frequency (de-
note such disequilibrium as dmax). Since andR 1 Rt s

, it follows that as d valuesL � L FP � .5F 1 (P � .5)t s t s

move toward dmax, the actual level of disequilibrium at
which exceeds being dependent on theFP � .5F (P � .5)t s

degree of elevation of above .R Rt s

On the basis of the algebraic symmetries in andR t

, it can be shown that the ratio is most extremeR R /Rs t s

for disease loci conferring modest disease risk (McGinnis
1998). To illustrate this extreme elevation of andR /Rt s

resulting elevation in if the marker andFP � .5F/(P � .5)t s

disease locus are strongly associated, figure 2 shows Pt

and when the DD homozygote has only twofold-Ps

greater disease risk than the dd homozygote. Figure 2
also assumes that the tested marker is the disease lo-
cus—in which case, . The fig-FP � .5F/(P � .5) p R /Rt s t s

ure’s much higher values of compared withFP � .5Ft

visually illustrates why the TDT has greater(P � .5)s

power than the ASP test to detect genes of modest effect,
if a marker is found that is strongly associated with the
disease locus. (For fuller discussion of the relative power
of the TDT and the ASP test, see Tu and Whittemore
[1999] and McGinnis [1998]).

Two further points should be noted about the equa-
tions in figure 1. First, if a biallelic marker is in linkage
equilibrium with the disease locus, the expression for

simplifies toPs

p(1 � p)2P p 0.5 � (1 � 2v) R ,s s[ ]F

which is identical to the expression for when a markerPs

is completely polymorphic (McGinnis 1998). This en-
ables power to be calculated when x2

asp is applied to a
completely polymorphic marker (see below). The second
point is that the expressions for , , and eachP P H/Fs t

simplify to corresponding expressions (“Y,” “P-trA” and
“h”) presented by Risch and Merikangas (1996) when
their assumptions are adopted (multiplicative mode of
inheritance, x2

asp evaluates a completely polymorphic
marker, x2

tdt evaluates a biallelic marker that is the dis-
ease locus) (for more details, see McGinnis [1998]). ,Ps

, and also simplify to corresponding expressionsP H/Ft

(“Y,” “tp,” and “hp”) in Camp (1997) that were derived
under the same assumptions as in Risch and Merikangas
(1996), except that penetrances were relaxed to cover
many modes of inheritance. As noted by Camp (1999),
these probabilities for allele transmission and parental
heterozygosity are correct, even though the method of
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Table 1

Two Methods for Calculating Number (N) of ASP Families Required by the TDT and the ASP Test to
Achieve Power of (15b)

TEST

FORMULAE
a

Method 1b Method 2c

TDTd
2H 2�Z � 1 � (2P � 1) Z[ ]a/2 t 1�bF

N p
H 24 (2P � 1)tF

2�Z � 2 P (1 � P )Z[ ]a/2 t t 1�b

N p
H 24 (2P � 1)tF

ASP teste
2H 2�Z � 1 � (2P � 1) Z[ ]a s 1�bF

N p
H 22 (2P � 1)sF

2�Z � 2 P (1 � P )Z[ ]a s s 1�b

N p
H 22 (2P � 1)sF

a a and b are probabilities of type 1 and 2 error, respectively, (i.e., 1�b p power); Zx ( ,x p a

, or ) is the value of the standard normal deviate (Z) such that prob( ; ora/2 1 � b Z 1 Z ) p x x p ax

for one- and two-tailed tests, respectively.a/2
b Using the general expressions for , , and in figure 1, Method 1 extends the approach ofP P H/Fs t

Risch and Merikangas (1996 [note 6]) to general modes of inheritance and to markers not necessarily
identical with the disease locus.

c Method 2 was described by McGinnis (1998). Whereas Method 1 allows the total number of
heterozygous parents to vary randomly around the expected value of , Method 2 uses a binomial2NH/F
distribution that assumes exactly heterozygous parents.2NH/F

d When multiplied by 2, these formulae calculate the number (N) of singleton families required by
the TDT if singleton values for , H, and F are substituted (denoted as *, H*, and F* in the appendix,P Pt t

which gives the appropriate expressions).
e If a marker is completely polymorphic, N for the ASP test is determined by setting andH/F p 1

(see text).2P p (1 � 2v) [p(1 � p)/F]Rs s

TDT-power estimation in Camp (1997) was somewhat
inaccurate. Thus, expressions in Risch and Merikangas
(1996) and Camp (1997) are special cases of equations
in figure 1 which are more general, in part, because they
describe markers not necessarily identical with the dis-
ease locus.

Power of the ASP Test and TDT

Table 1 gives expressions for the number (N) of fam-
ilies required by the TDT and ASP test to achieve power
of (1�b) assuming one ASP per family is considered and
that the probability of type I error is a. Using the ex-
pressions in figure 1 for , , and , “Method 1”P P H/Fs t

extends the approach of Risch and Merikangas (1996
[see note 6]) to general modes of inheritance and, fol-
lowing those authors, assumes that the total number of
heterozygous parents randomly varies around the ex-
pected value . “Method 2” was described in2NH/F
McGinnis (1998) and is based on a single binomial dis-
tribution that assumes the total number of heterozygous
parents to be exactly . Both methods can calculate2NH/F
x2

asp and x2
tdt samples sizes for biallelic markers of any

allele frequency and in any degree of linkage disequilib-
rium with the disease locus. If a marker is completely
polymorphic, x2

asp sample size is calculated by setting
andH/F p 1

p(1 � p)2P p 0.5 � (1 � 2v) R ,s s[ ]F

for reasons noted above; in this situation, the formulae
for Methods 1 and 2 become identical. Since both meth-
ods can calculate and compare the power of x2

asp and
x2

tdt for general modes of inheritance and for markers
distinct from the disease locus, they provide an alter-
native to the only other approach that, to my knowledge,
is similarly general (Tu and Whittemore 1999). Below,
I argue that Methods 1 and 2 are simpler and more
general than the method of Tu and Whittemore, with
negligible loss of accuracy.

Comparison with Alternative Methods for Calculation
of TDT Power in ASPs

The expressions in figure 1 for and correctly accountP Ps t

for the fact that the probability of parental allele trans-
mission partly depends on the genotype of the parent’s
mate (see appendix I in McGinnis [1998]). However,
Methods 1 and 2 consider parents to be randomly as-
certained as a series of independent events, rather than
as pairs (parent and mate), in order to simplify power
calculation and derivation of a normal distribution for
values of x2

asp and x2
tdt (Risch and Merikangas 1996;

McGinnis 1998; see also Camp 1999 and appendix C
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Table 2

Pairwise Comparisons between the Four Methods

Tu and Whittemore Method 1 Method 2

Genome Scan:
Knapp 1.4%�1.6% (6%) 0.7%�0.7% (3%) 1.0%�0.9% (3%)
Tu and Whittemore … 1.2%�1.1% (4%) 2.3%�2.3% (9%)
Method 1 … … 1.2%�1.4% (5%)

Candidate gene:
Knapp 3.4%�3.6% (13%) 1.9%�1.7% (6%) 1.9%�1.8% (7%)
Tu and Whittemore … 2.6%�2.4% (9%) 5.0%�5.0% (18%)
Method 1 … … 2.6%�3.0% (11%)

NOTE.—Four methods are: the “first approximation” of Knapp (1999), the method of Tu
and Whittemore (1999) (which gave identical numerical results to the “second approximation”
of Knapp [1999]), and Methods 1 and 2 as described in the text and in table 1. Number (N)
of ASP families needed by the TDT to achieve 80% power ( ) was calculated byZ p �.841�b

each method for the 48 disease models considered by Knapp (1999). N was calculated assuming
a genome scan of 500,000 SNPs ( , ) or a test of one candidate�8a/2 p 5 # 10 Z p 5.33a/2

SNP ( , ). For each pairwise comparison between two methods, the tablea/2 p .025 Z p 1.96a/2

shows the mean percent difference in N for the 48 disease models � SD and also shows the
largest percent difference observed (in parentheses).

of Tu and Whittemore 1999). Methods 1 and 2 also
assume that each sib of an ASP contributes indepen-
dently to the TDT x2 statistic, an assumption previously
found to have negligible effects on x2

tdt power estimates
(see appendix II of McGinnis [1998]). By contrast,
Knapp (1999) and Tu and Whittemore (1999) recently
presented more complex algebraic formulations that
avoid both of these simplifying assumptions in order to
achieve more precise estimates of sample size. Knapp’s
two formulae (“First Approximation” and “Second Ap-
proximation”) both calculate TDT sample size under the
assumption that a biallelic marker is the disease locus,
with the “First Approximation” giving more precise re-
sults (judging from simulations) over all tested modes of
inheritance. Tu and Whittemore’s method, as noted
above, is more general, since it can evaluate TDT sample
size for biallelic markers distinct from the disease locus.

To quantify differences among the methods, I used
each of them to calculate the number (N) of ASP families
required by the TDT for 80% power to detect linkage
under each of the 48 disease models previously consid-
ered by Knapp (1999). Following Knapp (1999), the
linked marker was assumed to be identical to the bial-
lelic disease locus. I calculated samples sizes needed,
assuming a TDT genome scan with 500,000 single-nu-
cleotide polymorphisms (SNPs) ( ) or as-�8a/2 p 5 # 10
suming a single TDT test ( ) as would occura/2 p .025
in evaluating one SNP in a candidate gene. For each
pair of methods, table 2 shows the mean percentage
difference in N for the 48 disease models � standard
deviation and, inside parenthesis, shows the largest per-
centage difference in N observed over all 48 models.
Note that differences among the methods are generally
small but are categorically larger for testing one biallelic
candidate than for a genome scan. Therefore, table 3

shows the actual sample sizes for the candidate gene
test, to give a more concrete sense of the degree of dif-
ference among the methods.

I wish to make several points about these results:

1. Surprisingly, Tu and Whittemore’s method and
the Second Approximation of Knapp gave identical nu-
merical results over all 48 disease models. This suggests
that the two approaches are essentially identical, even
though Tu and Whittemore’s method is more general
since it can evaluate markers that are distinct from the
disease locus.

2. Methods 1 and 2 showed very little divergence
from the First Approximation of Knapp, in terms of both
mean difference over the 48 disease models and largest
single difference observed (tables 2 and 3). Since Knapp’s
simulations led him to conclude that the First Approx-
imation is extremely precise, the minimal divergence
with Methods 1 and 2 indicates that these methods are
also very precise.

3. Although precision in sample-size estimates is im-
portant, simplicity and interpretability of the method are
also important. As the only general alternative to Meth-
ods 1 and 2, actual calculation by the method of Tu and
Whittemore seems much more complicated since their
method requires a number of summations and step-by-
step substitutions into multiple matrices and equations.

4. The magnitude of pairwise differences shown in
tables 2 and 3 did not increase when Methods 1 and 2
and the method of Tu and Whittemore were used to
calculate TDT sample sizes for biallelic markers not
identical with the disease locus (data not shown). These
pairwise comparisons were conducted for each of the 48
disease models retaining the assumption of equal fre-
quency for the marker and disease allele, but disequilib-
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Table 3

Number (N) of ASP Families Needed for 80% Power, as Calculated by the Four Methods, Assuming TDT Test of One Candidate SNP

g

AND

pb

MODE OF INHERITANCE
a

Multiplicative Additive Recessive Dominant

Kn T-W M1 M2 Kn T-W M1 M2 Kn T-W M1 M2 Kn T-W M1 M2

4.0:
.01 46 53 48 43 50 57 53 47 1.5#105 1.5#105 1.5#105 1.5#105 51 62 54 49
.10 9 10 10 9 15 16 16 15 238 244 224 222 18 19 20 19
.50 12 13 12 11 26 28 27 26 19 20 19 18 99 100 102 102
.80 31 36 33 30 73 76 74 72 35 39 36 33 1473 1477 1489 1488

2.0:
.01 399 418 405 392 399 418 405 392 2.6#106 2.6#106 2.6#106 2.6#106 418 437 425 412
.10 53 55 54 53 53 55 54 53 3109 3116 3052 3050 81 82 83 81
.50 36 37 37 36 36 37 37 36 88 89 86 86 225 226 230 230
.80 80 83 81 79 80 83 81 79 100 103 100 98 2937 2941 2965 2963

1.5:
.01 1592 1620 1601 1582 1531 1559 1538 1519 1.3#107 1.3#107 1.3#107 1.3#107 1645 1672 1655 1636
.10 193 195 193 192 141 144 140 139 14455 14463 14336 14334 264 266 267 265
.50 99 100 99 99 47 48 47 46 295 296 291 290 520 521 528 527
.80 193 195 193 192 85 88 86 84 262 264 260 259 6171 6175 6214 6213
a Kn p “first approximation” of Knapp (1999); T-W p method of Tu and Whittemore (1999); M1 p Method 1; M2 p Method 2. Following

Knapp (1999), the tested marker is assumed to be the disease locus. Relative to the low-risk homozygote (assigned a disease risk of 1), the
higher-disease-risk homozygote and heterozygote have respective disease risks of g2 and g (multiplicative inheritance), 2g and g (additive
inheritance), g and 1 (recessive inheritance), and g and g (dominant inheritance).

b p p frequency of the disease-predisposing allele; g p relative disease risk of heterozygotes compared with homozygotes who lack the
disease-predisposing allele

rium was allowed to vary in 25% decrements from
�100% disequilibrium (highest positive value, equiva-
lent to marker and disease locus being identical) to
�100% disequilibrium (most negative value, equivalent
to maximum association between the disease allele and
the alternate marker allele).

5. When Methods 1 and 2 are used to calculate TDT
sample size for singleton families (see footnote d of table
1), the results again match or surpass the degree of pre-
cision indicated by tables 2 and 3. Indeed, Methods 1
and 2 give number of singleton families required for
genome scans that show little or no departure from the
singleton estimates given in table 3 of Knapp (1999) and
table 1 of Camp (1999) (data not shown). The expres-
sions in the appendix for singleton families (“ *” andPt

“H*/F*”) can be shown to be related to important sin-
gleton probabilities derived by Ott (1989) and by Sham
and Curtis (1995) (see McGinnis [1998]). *and H*/F*Pt

also subsume as special cases corresponding singleton
probabilities (“ts” and “hs”) presented by Camp (1997).

6. The expressions for and H/F enable x2
asp powerPs

to be evaluated for incompletely polymorphic markers
like SNPs and also enable the influence of linkage dis-
equilibrium on x2

asp to be considered. This makes meth-
ods 1 and 2 more general than alternative approaches
that only analyze x2

asp power for completely polymor-
phic markers or for markers in equilibrium with the
disease locus. Given the imminent release of dense SNP
maps with markers likely to be in linkage disequilibrium

with each gene, this additional capability may prove
valuable.

7. Like formulae presented by others (Risch and
Merikangas 1996; Camp 1997; Knapp 1999; Tu and
Whittemore 1999), the sample-size formulae in table 1
are interpreted as number of families—being based on
the assumption that each family contributes the mini-
mum data required for family ascertainment (i.e., one
ASP per family under ASP ascertainment, one affected
child per family under singleton ascertainment). This is
reasonable since it can be shown that 90%–96% of as-
certained families contain only the minimum data under
many disease models (e.g., in all 48 models considered
in table 3, if disease prevalence is �1% and mean nu-
clear family size is !8). However, I wish to note that the
equations for singleton families ( *, H*/F*) and ASPPt

families ( , , H/F) accurately account for the expectedP Pt s

distribution of families with more than the minimum
number of affected offspring required for ascertainment
(see appendix I in McGinnis [1998]). Thus the equations
accurately apply to randomly ascertained families with
more than the minimum data. If the fraction of such
families is substantial (due to high population prevalence
of disease or large mean size of nuclear families), the
formulae in table 1 would still be accurate but are better
interpreted as the required number of individual affected
offspring or ASPs in randomly ascertained families,
rather than total number of families.
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Relative Sample Sizes Required by the TDT and Case-
Control Designs

Since association studies with disease cases and unrelated
or related controls is an important complementary strat-
egy to association testing by the TDT, it should be noted
that two simple relationships summarize the relative
sample sizes required by the TDT and two types of case-
control design. Using the formulae described here (see
footnote d of table 1), Darvasi and McGinnis (1998)
calculated the number of trios (parents–one affected
child) required by the TDT to achieve equivalent power
to case-control studies having an equal number of un-
related cases and unrelated controls. With no exceptions,
we found the number of required cases to be almost
identical to the number of trios required by the TDT
across a broad range of disease models and degrees of
linkage disequilibrium between marker and disease loci.
When applied to each of the 48 disease models in table
3, I found that the formulae for unrelated cases and
controls in Risch and Teng (1998 [pp. 1280–1281]) also
yield a required number of cases that is nearly identical
to the number of trios required by the TDT, for either
a genome scan or test of one candidate SNP.

A second relationship summarizes the relative sample
sizes needed for equal power by the TDT and S-TDT,
a design that compares cases and related (i.e., unaffected
sib) controls (Spielman and Ewens 1998). Whittaker
and Lewis (1999) discovered that if each test is applied
to families with one affected child and n unaffected sibs,
the S-TDT requires times as many such fam-(n � 1)/n
ilies as the TDT for equal power. So, to summarize, the
formulae for calculating number of singleton families
required by the TDT (see footnote d of table 1) also
imply approximate sample sizes required for association
studies with either unrelated cases and controls, or with
unrelated cases each of which is matched to n unaffected
sibling controls.

Influence of Polygenic Background

The equations I have presented do not explicitly account
for modulation of disease penetrance by polygenic back-
ground loci, a limitation shared with previous equations
describing TDT and ASP power (Risch and Merikangas
1996; Camp 1997; Knapp 1999; Tu and Whittemore
1999). When such background genotypes are present,
each penetrance of the “foreground” locus (a, b, or g)
represents the mean of a distribution of penetrance val-
ues for the DD, Dd, or dd genotype, each distribution
being generated by the frequencies of the background

genotypes and their specific effects on DD, Dd, or dd
penetrance. Preliminary investigation (author’s unpub-
lished data) indicates that the equations for singleton
families ( *, H*, and F*) are unchanged by the model’sPt

inclusion of background genotypes, the only difference
being that a, b, and g would now represent means of
penetrance distributions in the general population. How-
ever, the equations for sib pairs ( , , H, and F) appearP Ps t

to require each occurrence of a, b, or g to be replaced
by mean penetrance in the general population added to
a term related to the variance of the corresponding pen-
etrance distribution. This suggests that the expressions
for , and may accurately account for the presenceP P H/Fs t

of background loci if a, b, and g are set somewhat higher
than their mean values in the general population (per-
haps reflecting increased DD, Dd, and dd penetrance
in affected sib-pair families caused by a higher frequen-
cy in such families of disease-predisposing background
alleles). The influence of polygenic background on
TDT and ASP power is a topic that merits further
investigation.

Concluding Remarks

In conclusion, my primary purpose is to highlight the
usefulness of the equations for , , H/F, and their sin-P Ps t

gleton-family counterparts ( *, H*/F*) for understand-Pt

ing and comparing the properties of the TDT and the
ASP test across a broad range of disease models and
possible relationships between markers and linked dis-
ease loci. As I have demonstrated, these equations yield
very accurate power estimates. Furthermore the central
equations ( and in fig. 1) exhibit symmetries andP Ps t

partition the contributions of basic genetic parameters,
thus facilitating comparison and understanding of the
TDT and the ASP test (McGinnis 1998). Methods 1 and
2 also have the additional appeal of being conceptually
simple; Method 2, for example, involves a single bino-
mial distribution with number of “trials” ( or2NH/F

) determined by the number of heterozygous par-4NH/F
ents ( ) and probability of “success” equal to2NH/F Ps

or . In view of the increasing importance of SNPs (Col-Pt

lins 1997) and the growing interest in linkage and disease
association studies (Risch and Merikangas 1996; Schaid
1998), I hope these equations prove useful.
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Appendix

General equations for singleton families are shown here as derived in McGinnis (1998). The equations assume
(1) random ascertainment of nuclear families with at least one affected child and (2) linkage between a biallelic
marker (alleles A and B) and a biallelic disease locus (predisposing allele D, “protective” allele d). With minor
modifications, these equations also describe markers that are multiallelic (McGinnis 1998). Variables in the equations
are as follows: a, b, and g are penetrances of the DD, Dd, and dd genotypes, respectively; c1, c2, c3, and c4 are
population frequencies of AD, Ad, BD, and Bd haplotypes, respectively; p is the population frequency of disease
allele D; and v is the recombination fraction between marker locus and disease locus. As explained in footnote d
of table 1, the expressions given below for and are used to calculate the number of singleton families∗ ∗ ∗P H FZt

required by the TDT to achieve a given power.
is the singleton-family counterpart of . It is the probability that marker allele A was transmitted to the∗P Pt t

affected child by a randomly ascertained parent who is informative (A/B) at the biallelic marker:

c c � c c (a � b) (a � g) (b � g)1 4 2 3∗ 2 2 ∗ ∗ ∗( )P p 0.5 � 1 � 2v p � 2p(1 � p) � (1 � p) p 0.5 � (L )(M )(R ) .t t t t∗( )[ ]H 2 4 2

is the proportion of randomly ascertained parents expected to be heterozygous (A/B) at the biallelic marker.∗ ∗H FZ
The expressions for and are∗ ∗H F

p(a � g) � b � g∗ [ ] [ ]H p 2c c p(a � b) � b �2(c c � c c ) � 2c c p(b � g) � g1 3 1 4 2 3 2 4[ ]2

and

∗ 2 2F p p a � 2p(1 � p)b � (1 � p) g .
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